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The flow structuration of silicon oil �Prandtl number of 10.3� in a open cylindrical pool heated from the
center of the surface is investigated numerically. Our purpose is to perform the numerical simulation of
experimental results obtained by Favre et al. �Phys. Fluids 9, 1473 �1997�� who observed transitions between
steady and axisymmetric flows at sufficiently low values of the Marangoni number �Ma� and various types of
instability depending on the height of the fluid. The hydrothermal wave regime has been obtained at critical
values of Ma which depend on the Bond number and on the aspect ratio. The numerical results are in good
agreement with the experimental ones.
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I. INTRODUCTION

When a liquid free surface is submitted to a horizontal
thermal gradient, there appears a surface stress which drives
a flow along the interface. The latter phenomenon called the
thermocapillary effect, also called the Marangoni effect,
comes from the existence of variations of the surface tension
along the interface correlated to the temperature variations
�T. Generally, thermocapillary effects are coupled with natu-
ral convection. Since buoyancy is a body force, its impor-
tance depends on the volume of the pool in comparison with
its free surface.

The thermocapillary effect is found in various industrial
processes. For example, in welding devices by means of
electron/laser beam or arc, the molten pool is heated by its
free surface, and there exist very strong temperature gradi-
ents along the surface �1–3�. The Marangoni effect is usually
dominant, and significant fluid flows are observed. Similar
situations are encountered in evaporating devices which use
concentrated heat sources �laser or electron beam� for the
coating of substrates by vapor deposition.

In crystal growth, thermocapillary effects are also present,
although less intense �4�. Nevertheless, Marangoni convec-
tion is responsible for various defects, e.g., striations of the
solid crystal, which result from the flow instabilities of the
thermocapillary type.

The aim of the present paper is to analyze, thanks to nu-
merical calculations, the various types of flow configurations
obtained experimentally by Favre �2,3�. First the different
types of flow and instabilities put forth in the literature will
be reviewed hereafter in the present section. Then in Sec. II
the formulation of the problem is provided. In Sec. III the

various types of computed flow patterns and instabilities are
compared to the experimental data.

Basic flow. Contrary to the Bénard type flow �vertical
thermal gradient only� for which a threshold of temperature
exists, in this configuration as soon as �T�0, the fluid
moves. For example, if we consider the simplest case corre-
sponding to a fluid cavity submitted to a horizontal tempera-
ture difference �T applied on each lateral side, the flow near
the equilibrium state, i.e., small �T, is bidimensional and
stationary. This flow is named “basic flow.” Hydrodynamic
theory for the thermocapillary effect is quite old since the
basic flow in a rectangular cavity with no gravity was solved
by Birikh �5� in 1962 and the first linear stability study was
made in 1983 by Smith and Davis �6�. Laure et al. �7� and
Mercier and Normand �8� have extended this solution to a
flow with thermogravity effect and other boundary condi-
tions. Finally, Garnier �9� proposed an analytical solution to
the basic flow in a cylindrical cavity based on a method
introduced by Laure et al. �7�. This solution will be extended
to the specific case studied experimentally by Favre �2� ex-
periments in which the bottom boundary is cooled.

Instabilities. When the imposed temperature difference
�T crosses a certain threshold, the basic flow is destabilized.
Instabilities have various forms and characteristics depend-
ing on many parameters of the problem such as the Prandtl
number, Bond number, aspect ratio, Biot number, and the
type of boundary conditions. The most studied case in the
literature is a rectangular cavity heated and cooled on both
sides by a vertical boundary, the free surface and the bottom
being insulating or conducting. In this configuration the ther-
mal gradient is horizontal, which simplifies the analytical
solution. Annular geometry is more and more studied be-
cause of two reasons. First, in this particular case, the ab-
sence of walls in the orthoradial direction �i.e., the direction
perpendicular to the thermal gradient� avoids experimentally
wave reflection on the side walls. Second, this annular ge-
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ometry is closer to the industrial process of the Czochralski
crystal growth method of electron beam and laser surface
heating. Very few studies �10,11� have considered a heating
configuration localized on the surface, as used in the Favre
�2� study. Moreover, the condition of a cooled bottom bound-
ary is also rarely used �12�. The strong variation of the sta-
bility criteria with the numerous problem parameters makes
the comparison between results of different studies very hard
to achieve. However, the instabilities can be sorted out in
three groups.

The first type of instability in a similar configuration is the
function of the aspect ratio of the fluid layer. For a small
Bond number, this instability is composed of corotative sta-
tionary or time dependent rolls with a two-dimensional lon-
gitudinal axis. Laure et al. �7� give critical values associated
to their apparition in a long rectangular cavity with a low
Prandtl number fluid. Mercier and Normand �13� have shown
that rolls appear near the cold wall for fluid with a low
Prandtl number �Pr�0.01�, near the hot wall for fluid with a
high Prandtl number �Pr�4�, and near both sides for fluid
with an intermediate Prandtl number. These results have
been checked in a great number of two-dimensional numeri-
cal publications �14–18�. The influence upon the flow struc-
ture of parameters as the aspect ratio, the Bond number, and
several boundary condition types has been also studied.
Some numerical studies �14–16� report the presence of tem-
poral oscillations due to the destabilization of the first coro-
tative roll. Experimentally this instability is well observed
for various configuration �5,12,15,19�.

The second type of instability consists of stationary rolls
with an axis collinear to the thermal gradient direction. This
instability has been reported experimentally by Daviaud and
Vince �20� in a rectangular cavity and in an annular cavity by
Favre �3� for a relatively high height of fluid �h�3 mm�. Li
et al. �11� found numerically longitudinal rolls in an annular
cavity while Mercier and Normand �8�, from an analytical
point of view, have predicted this instability for a fluid of
Prandtl number Pr=7 in a cavity with conducting thermal
boundary conditions at the bottom and introducing a Biot
number at the surface. This kind of instability has not been
studied widely.

The third and most interesting instability are the hydro-
thermal waves. Smith and Davis �6� have studied in 1983,
the linear stability of a return flow without gravity and dis-
covered this new kind of instability. They appear as a propa-
gative ondulatory instability of the basic flow with specific
frequency and wave number. The propagation angle of the
waves with the thermal gradient direction is a function of the
Prandtl number �6�. Numerous experiences observed these
hydrothermal waves in rectangular �19� and annular �12� ge-
ometry. A summary is presented by Burguete et al. �21�. A
stability diagram of the flow is achieved plotting the critical
values of imposed thermal difference �or Marangoni number�
for which instability occurs against the height of the fluid in
the cavity �or Bond number�. The critical Marangoni value
increases with the height of fluid. If the height of fluid
crosses a certain threshold the instability is not hydrothermal
waves any longer but an oscillating multicellular flow. In a
majority of studies, the hydrothermal waves are the second
instability, the first being the corotative instability. A similar

stability diagram of the flow has been drawn by Favre �2�
which is shown in Fig. 1. Garnier �9� puts forth the assump-
tion that the hydrothermal waves can appear only when Bd
�1, i.e., when thermogravitational forces are negligible, a
suggestion which is in agreement with the theory of Smith
and Davis �6� where only the thermocapillary force was
taken into account.

From a numerical point of view, many calculations, espe-
cially in two-dimensional geometries, has been achieved
�see, for example, Ben Hadid and Roux �17��. The increase
of computation capacity leads to the achievement of simula-
tions of the three-dimensional hydrothermal waves. Hoyas
and co-workers �22,23� performed a series of three-
dimensional calculations in an annular geometry with a nu-
merical method based upon the resolution of the set of sta-
bility equations with a decomposition of the fields in
Chebyshev polynoms. They found, for a fluid with an infinite
Prandtl number, hydrothermal waves propagating near the
surface and studied the threshold of appearance depending
on the aspect ratio and thermal boundary. Li and co-workers
�11,24–26� simulate hydrothermal waves in an annular ge-
ometry heated either by the outer wall or the surface, solving
directly the Navier-Stokes equations with a volume-of-fluid
method �Pr�1�. Specifically, they were able to determine
both the threshold of apparition of the waves and to visualize
them correctly. In 2006, Shi and Imaishi �27� simulated, with
the same methods, a fluid of Prandtl number Pr=6.7. Visu-
alization of the hydrothermal waves computed by Shi and
Imaishi �27� is similar to that obtained experimentally by
Garnier �9�.

Experimental results of Favre �2�. The studied geometry
is original because the fluid is heated on the surface in the
center of the cavity and cooled both by the bottom and side
walls. Favre �2� observed the three different types of insta-
bility as we can see on the stability diagram in Fig. 1. What-
ever the height of fluid h, when �T is increased, a transition
occurs between a steady basic flow �BF� and a structured
stationary flow. The height of fluid determines the type of
visualized structures: corotating rolls �CRs�, stationary petals
�SPs�, or stationary rays �SRs�. Three shadowgraphic images
explaining the name of stationary instabilities are presented
in Fig. 2. When �T is further increased, the flow becomes
unsteady and a new type of instability could appear. The
stationary patterns �CR,SP, SR� are replaced, respectively, by
hydrothermal waves �HWs�, radial pulsations �RPs�, and os-

FIG. 1. Diagram of stability due to Favre �2� �see text for
details�.
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cillating rays �ORs�. The structures named “rays” correspond
to the second type of instabilities described below, i.e., sta-
tionary rolls with an axis collinear to the thermal gradient
direction. The “petal” structure has been described in the
literature as the superposition of two counter-rotative wave
trains but Favre �2� was unable to describe it precisely.

II. PROBLEM FORMULATION

A. Physical and mathematical models

The problem consists of the analysis of a flow in a cylin-
drical pool with a free surface subjected to a thermal gradient
�cf. Fig. 3�. The fluid layer of height h is heated at the sur-
face in the center of the cylindrical pool with a heater of
radius R1=15 mm and cooled at the bottom and side of the
pool of external radius R2=50 mm. The radial length of the
pool is L=R2−R1, the heater is at the temperature TH, while
the cooled surfaces are at the temperature Tc. The typical
thermal gradient in the pool is �T /L= �TH−Tc� /L�0. We
introduce a Biot number Bi to characterize convective heat
transfer on the free surface. The driving forces of the flow
are �i� the buoyancy force which tends to drive the hot fluid
upward, and �ii� the thermocapillary force which draws the
surface fluid from the hot central zone toward the cold
boundary. The thermocapillary force is generated by the
variation of the surface tension � with the temperature which
is well represented by the linear law ��T�=�0−��T−T0�
where �=−�� /�T is for common fluids always positive and
constant and �0 is the value of the surface tension at the
temperature T0. The physical properties of the silicon oil are
summarized in Table I.

Governing equations. The incompressible governing
equations are expressed in a cylindrical reference frame and
take into account the buoyancy effect with the Boussinesq
approximation,

�0� �v�

�t
+ �v� · ���v�� = − ��P + 	 � v� + �0
�T − T0�g� ,

�� · v� = 0,

�T

�t
+ v� · ��T = � � T , �1�

where v� is the velocity vector such as v��r ,� ,z�=uer
�+ve�

�

+wez
�, 
= 1

�0

��
�T is the thermal expansion coefficient supposed

to be constant, and �0 is the fluid density at the temperature
T0.

The boundary conditions. At the bottom z=0, we use the

no-slip condition v��z=0=0�, while the temperature is imposed
T�z=0=Tc. For z=h, the free surface is assumed to be flat and
nondeformable, and a no-flux condition is applied, v� ·n�=0.
Furthermore, the viscous surface stress is equal to the capil-
lary stress induced by the thermal gradient: 	� �u

�z �z=h

=�� �T
�r �z=h. The thermal condition is � �T

�r �z=h+Bi�T−T�=0,
where Bi is the Biot number and T is the temperature far
from the surface being equal to Tcond. We introduce the non-
dimensional parameter 	B such that 	B=Bi / �1+Bi�.

This system is characterized by six dimensionless param-
eters: �i� Prandlt number: Pr=� /�; �ii� Rayleigh number Ra
=g
�Th4 /��L; �iii� Marangoni number Ma=��Th2 /�0��L;
�iv� aspect ratios �=h /L and �v� �=L /R1; �vi� Biot number
Bi=hNh /� where hN is the convective heat transfer coeffi-
cient at the free surface. Instead of the Rayleigh number we
use the dynamic Bond number Bd=Ra /Ma. The dynamic
Bond number can be written as the square of the ratio be-
tween the height of fluid h and the capillary length he

2

=� /�0g.

B. Numerical methods

The commercial software FLUENT is used for the simula-
tions. The equations are discretized by the finite volume
method. The third-order MUSCL scheme �monotone
upstream-centered schemes for conservation laws� is used
for the convective terms while a second-order centered

TABLE I. Physical properties of the fluid.

Kinematic viscosity �=6.5�10−7 m2 s−1

Density �=760 kg m−3

Thermal diffusivity �=0.63�10−7 m2 s−1

Thermal conductivity �=0.1 W m−1 K−1

Temperature coefficient
of surface tension

�=−8�10−5 N m−1 K−1

Thermal expansion coefficient 
=1.34�10−3 K−1

Prandtl number Pr=10.3

(a) (b) (c)

FIG. 2. Shadow-graphic views of stationary instabilities: �a�
corotating rolls �CRs�, �b� stationary petals �SPs�, and �c� stationary
rays �SRs� obtained by Favre �2�.

FIG. 3. �Color online� Section of the axisymetric cylindrical
geometry and associated notations. Two streamlines of the basic
flow are represented symbolically in the left part of the section.

COMPARISON BETWEEN NUMERICAL AND EXPERIMENTAL … PHYSICAL REVIEW E 76, 066307 �2007�

066307-3



scheme is applied to the diffusion terms. The pressure terms
are interpolated with the PRESTO! scheme. The SIMPLEC

algorithm is used to handle the pressure coupling. The high
orders of resolution are useful to simulate correctly the
strong coupling between the flow and the temperature field
due to the high value of the Prandtl number �Pr=10.3�. Con-
vergence at each time step is considered when residual error
of the continuity equation and velocity component became
less than 10−5 and less than 10−7 for the temperature. Nu-
merical simulations were performed on an Intel Bi-pro Xeon
3.80 Ghz, 3.89 Go RAM.

Nonuniform staggered grids are used in this study. The
mesh is finer near the free surface and near the cold vertical
boundary because of the strong velocity and thermal gradient
due to the Marangoni effect and the thermal boundary layer.
To assess the effects of numerical diffusion we use the mesh
Peclet number, Pem, which is the ratio of a convection time
to a thermal diffusion time at the scale of the mesh, Pem
=umlm /� where um is an average velocity and lm is a mesh
characteristic length. A high value of the Peclet number
means an important numerical diffusion and gives less accu-
rate results. Several grids were tested. The convergence tests
for two-dimensional grids are presented in Table II for the
cases h=14.9 mm and 2.9 K, while Table III shows the 3D-
grid convergence test for h=2 mm. The criterion are �i� the
value of the heat flow evacuated by the heater, �ii� the radial
velocity value at the free surface for three different radii �25,
30, and 38 mm�, �iii� the maximal and global average value

of the Peclet number, and �iv� mesh percentages of the field
having a Peclet number, lower than 1 and higher than 10.

It must be noticed that the values of the radial velocity on
the surface are very sensitive to the mesh quality, but the
global flow structuration does not really change.

The shadowgraphic method used experimentally by Favre
consists of averaging the horizontal thermal gradient along
the height of fluid. From a numerical point of view, similar
visualizations are obtained by deleting the visual effect of the
main radial thermal gradient to emphasize azimuthal varia-
tions of the thermal gradient. A first method due to Li et al.
�24� consists in computing a fluctuating temperature field T�
defined as

T��r,z� = T�r,�,z� −
1

2�
�

0

2�

T�r,�,z�d� . �2�

The second method consists in post-treating directly the ra-
dial or tangential temperature gradient field.

III. RESULTS AND DISCUSSIONS

A. Basic flow

The analytical solution of the thermoconvective basic
flow for the cylindrical geometry within the assumption of
small aspect ratio is presented in this section. This solution,
developed by Garnier �9�, generalizes those obtained for
rectangular geometry. We extend it to the specific experimen-

TABLE II. Grid convergence for the two-dimensional case.

Number
of meshes
�r�z�

u�25;14,9�
mm s−1

u�30;14,9�
mm s−1

u�38;14,9�
mm s−1 PeMax

% mesh
Pe�1

% mesh
Pe�10 Flux �W�

7 636 5.2 2.6 1 35.8 0.2197

50 700 6.6 4 1.1 17.3 75 1.5 0.2237

110 000 7.3 4.8 1.1 15 77 0.3 0.2258

126 000 7.6 5 1.9 13 78 0.2 0.2265

TABLE III. Grid convergence for the 3D case with two meshes: A is 80�r�, 120���, 20�z�, and B is 120�r�,
180���, 18�z�. Around 50 000 meshes are used in both case A and B to discretize the central zone under the
heater.

T �K� Mesh
u�25;2�
mm s−1

u�30;2�
mm s−1

u�38;2�
mm s−1 PeMax Peaverage

% mesh
Pe�1

% mesh
Pe�10 Flux �W�

1 2D 1.60 1.25 0.7 0.0674

3D A 1.55 1.2 0.68 23 1.9 48 2.9 0.0662

3D B 1.55 1.15 0.65 21 1.39 48 1.17 0.0651

2.9 2D 3 2.5 1.75 0.227

3D A 2.9 2.4 1.75 48 4.64 24 17 0.222

3D B 2.8 2.4 1.75 43 3.3 20.6 8.9 0.227

5 2D 2.5 4 2.5 0.420

3D A 3.5 3.25 2.5 68 6.73 20 24 0.413

3D B 3.4 2.75 2.2 98 6.4 8.9 22 0.457
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tal case of Favre which considers a cooled bottom boundary.
The governing equations for the fluid layer are expressed in
a cylindrical reference frame, but to approach the rectangular
solution, a change of variable is done, r=R1+x. The basic
flow being axisymmetric, it implies �

�� 	0, v	0. Hence-
forth, in all the equations the variables will appear in nondi-
mensional form notified by a star superscript. The scalings
are shown in Table IV. The method is based on the expan-
sion of all unknown variables in terms of the aspect ratio
considered as a small parameter �=h /L, as follows:

u*�x*,z*� = 

i=0

n

�iui
*�x*,z*� + O��n� .

The above expansion is introduced in the governing equa-
tions. The zeroth-order system can be solved analytically.
The temperature solution exhibits a linear z dependence be-
cause cooled bottom boundary T0

*�x* ,z*�=	BTcond
* �x* ,z*�,

where the nondimensional conducting profile of temperature
Tcond

* �x*�, is defined as

Tcond
* �x*� = 1 −

ln�1 + �x*�
ln�1 + ��

,

�=L /R1 characterizing the curvature of the cavity. We intro-
duce ��x*� as the horizontal temperature gradient of the con-
ducting temperature profile,

��x*� =
dTcond

*

dx* = −
1

ln�1 + ��
�

1 + �x* .

The zeroth-order vertical velocity v0
* vanishes, while the

horizontal component is

u0
*�x*,z*� = 	B

��x*�
Pr

� Ra

240
�10z*4 − 27z*2 + 14z*�

−
Ma

4
�3z*2 − 2z*�� . �3�

In the case of a rectangular geometry, terms of order equal
or greater than zero are all vanishing, so an exact solution for
the basic state can be found. The curvature of the cavity
implies a x dependence of all variables which induces non-
zero first-, second-, and higher-order terms. The system of
first-order equations, thanks to the zeroth-order solution, can
be solved in the same way. The first-order component of
temperature is

T1
*�x*,z*� = 	B

2 �2�x*�
240

� Ra

420
�100z*7 − 567z*5 + 490z*4

+ 175z* − 198	Bz*� − Ma�9z*5 − 10z*4 − 5z*

+ 6	Bz*�� . �4�

The expression of the first-order horizontal velocity compo-
nent u1

* is determined by the equation

�3u1
*

�z*3 =
Ra

Pr

�T1
*

�x* +
�

�z
�u0

*�u0
*

�x*� .

Results for the basic flow. The theoretical results devel-
oped in the previous section are valid for a small aspect ratio,
typically ��0.05. In the studied configuration where L
=35 mm, this condition required a height such that h
�1.75 mm. We choose h=1 mm ��=0.04� in the present
simulation, consequently the Bond number is fixed at Bd
=0.125. For this set of parameters, a typical basic flow is
obtained for �T=0.1 K �Ma=7.34�.

Analytical and numerical vertical temperature profiles are
shown in Fig. 4 for three different radii. The linear depen-
dence in z of the temperature profile is clear. The first-order
solution is more accurate but is not conclusive because of the
strong variation in z of the zeroth-order solution. Radial ve-
locity profiles at three different radii are presented in Fig. 5.
As the Bond number is much lower than 1, the thermocapil-
lary effects prevail. The expression of u0, Eq. �3�, can be
reduced only to the Marangoni term:

u0
*�x*,z*�  − 	B

��x*�
Pr

Ma

4
�3z*2 − 2z*� .

This expression represents the well-known parabolic pro-
file of a return flow with a x-dependent term ��x�. For large
values of h, comparison between experimental data due to
Favre and numerical simulations are shown in Figs. 6 and 7.
The conditions for both simulation and experiment are h
=14.9 mm �Bd=27.7�, �T=2.9 K �Ma=47255�, moreover,
for the simulation, the free surface is assumed to be insulat-
ing �Bi=0�. The analytical solution is less accurate in this
case because the aspect ratio is too large ���0.05�.

Figure 6 gives the experimental and numerical radial ve-
locity as a function of the depth z. The velocity profiles are
no longer parabolic because the Bond number is high, and,
furthermore, gravity plays a significant role. The agreement
between the numerical and experimental results indicates
that the assumptions of free surface, flat and adiabatic, are
relevant for the resolution of the flow.

Figure 7 presents the experimental and numerical iso-
therms of the basic flow in the same configuration. In the
lower zone, horizontal isotherms indicates that the bottom is
cold. A thermal boundary layer develops along the cold ver-
tical wall on the right. A difference with the numerical simu-
lation is the behavior of the isotherms near the free surface.
Some experimental isotherms hatch on the free surface
which proves that it is not strictly insulating contrary to the
assumptions made in the simulation. It would be necessary to
take into account the thermal losses by convection over the

TABLE IV. Adimensionnal scale.

Temperature �T−Tc� / �TH−Tc�
Radial length �x� L

Height �z� h

Velocity �u ,w� � /h

Pressure �2�0L /h3

Density �0
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free surface, the problem being to determine a value of the
heat transfer coefficient �or Bi�.

B. Two-dimensional instabilities

According to the stability diagram, the primary instability
corresponds to small heights of fluid, h�3 mm. The basic
flow, which is a return flow, destabilizes and gives birth to
rolls of a circular axis surrounding the heater. For approxi-
mately �T=1 K, the first roll appears near the hot side as
predicted by the theory �13� for fluids of Prandtl number
Pr�4. Instability propagates then toward the cold edge with
the appearance of new corotating rolls. The critical value of
�T �or Ma� for which the first roll appears is hard to deter-
mine because the rolls seems to be a part of the basic flow.
Moreover, experimental thresholds reported by Favre were
found using a low accuracy shadowgraphic visualization
method. So values reported on the stability diagram �3.4 K in
this case� are greater than the numerical ones because Favre
could simply not visualize very small rolls. The number of

corotating rolls depends on the Bond number and the aspect
ratio of the cavity. The numerical simulation indicates that
the aspect ratio influences only the number of corotating rolls
present in the cavity. On the contrary, the Bond number does
not change the wavelength of the instability but there is a
critical value �Bdc1� beyond which the corotating rolls
could not exist whatever the value of the Marangoni number.
This can be explained by the fact that the corotating roll is a
thermocapillary instability, when Bd�1, the thermocapillary
forces being weaker than the thermogravitational force.

For the experimental conditions h=2 mm �Bd=0.5�,
when �T is increased above a certain secondary threshold
�Tc, bidimensional oscillating instabilities are observed in
the computations. Instabilities grow starting from a basic
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radii �25, 30, and 38 mm� and Bi=5; h=1 mm �Bd=0.125� �T
=1 K �Ma=7.34�.
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FIG. 6. Experimental and numerical radial velocity profiles at
three different radii; h=14.9 mm �Bd=27.7�, �T=2.9 K �Ma
=47 255�.
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FIG. 7. Experimental �top� and numerical �bottom� isotherms of
the basic flow for h=14.9 mm, �T=2.9 K �Ma=47 255� �20 iso-
therms between 0.04 and 1.54 K�.
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flow obtained by a stationary resolution of the governing
equations. The disturbance appears at its early stage as sinu-
soidal oscillations whose amplitude grows exponentially �see
Fig. 8�. It can be expressed for the temperature, for example,
as

T�r,�,z,t� = T�r,�,z�e
It cos�
IIt� , �5�

where 
I is the growth rate of instability and 
II represents
the oscillation frequency. The growth rate value of the insta-
bility is easily obtained in a semilogarithmic graph. After this
growing phase, the instability stabilizes in nonsinusoidal os-
cillations with constant amplitude. Figure 9 shows temporal
evolution of the radial velocity at a monitoring point P �r
=30 mm and z=1 mm� over one period. The destabilization
came from the first roll and consists in a periodic release of a
new roll starting from the main one.

The new threshold, depending on the Bond number, could
be determined precisely with a method due to Li et al. �24�.
Plotting 
I as a function of �T �Ma� allows us to determine,
by linear regression, the critical value of the Marangoni
number �Mac� for which instability occurs for 
I=0. In Fig.
10, we can deduce a critical temperature difference of 9.4 K
�Mac=2760�. The value of �T corresponding to the appear-
ance of hydrothermal waves in the stability diagram by Favre
is 4 K �Ma=1150�, so Favre did not mention this temporal
two-dimensional instability because hydrothermal waves ap-
peared before, and experimentally these two-dimensional in-
stabilities could not be observed. These two-dimensional os-
cillations were not the subject of a thorough study because
Favre did not observe them. A lot of numerical publications
already studied them in the past �14–16� because they do not
require three-dimensional simulations. Experimentally some
authors have reported them in a rectangular pool and they are
often erased by three-dimensional instability.

C. Three-dimensional instabilities: Comparison
with experimental data

1. High height of fluid: Ray-type instability

The “ray”-type instability has been simulated only in a
fraction of 36° of the cavity with h=14.9 mm. Indeed, due to
the large height of fluid, we had to consider a vertical heater
and periodic conditions on the lateral boundary to allow a

fine mesh and reasonable computation times �160�r�
�64����60�z��. We have chosen to model 36° of the cavity
because the wave number predicted by Favre for this kind of
instability was 10. Moreover, computations were performed
with a cavity with a maximal angle of 45° but in this case the
ray instability does not appear. For �T=5 K, isotherms on
the surface obtained with a stationary computation are shown
in Fig. 11. In order to obtain a similar visualization of the
rays, the azimuthal temperature gradient ��T /��� is com-
puted. Moreover, an annular zone near the heater has been
hatched because the shadow-graphics method was perturbed
by the inner meniscus and the heater appears larger than it
really is in the experimental visualization. A reconstitution to
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FIG. 8. Typical temporal evolution of the corotating
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FIG. 9. Contour of stream function � over one period for �T
=15 K �Ma=4410� and h=2 mm �Bd=0.5�. From top to bottom
�max is �1,9 ;1 ,62;1 ,48;1 ,66�10−5 kg s−1.
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360° of the azimuthal temperature gradient is compared to
the shadow-graphic view obtained experimentally by Favre
in Fig. 12. The unstationary secondary instability of the rays
described by Favre corresponding to the oscillation of the
structure around their initial position had not been simulated
because it needed to simulate the full cavity.

2. Intermediate height of fluid: Petal-type instability

The petal instability has been recovered by a three-
dimensional simulation of a 4-mm-height layer �Bd=2� with
a horizontal heater and a cooled bottom boundary. The mesh
used for the simulation is 80�r��120����30�z� and 80 000
more cells under the heater. For �T=10 K �Ma=11 744�, a
visualization of azimuthal temperature gradient ��T /��� is
compared to the shadow-graphic view obtained experimen-
tally by Favre in Fig. 13. The experimental visualization ex-
hibits 14 structures against 16 for the numerical one. For this
value of the Marangoni number, the numerical structures are
stationary contrary to the prediction of the diagram of stabil-
ity in which for �T�6.5 K the petals rotate around the
heater. The flow near the heater is quite axisymetric and

bidimensional, and instability occurs at r=20 mm, corre-
sponding to the limit of the zone hidden by the inner menis-
cus. The fluid near the top surface moves faster periodically
with �. This produces a horizontal return flow between the-
ses structures. In fact, these petals are similar to non-fully-
developed rays. For this intermediate height of fluid this in-
stability fills all the height of fluid but is unable to reach the
outer wall because the bottom is cooled.

3. Small height of fluid

Primary instability: The co-rotative roll instability (CR).
The first observed instability is the corotative roll two-
dimensional instability already discussed in Sec. III B. The
visualization of filled contours of the radial thermal gradient
��T /�r� is similar to the experimental shadow-graphic visu-
alization of this instability as shown in Fig. 14. As predicted
by Favre, the two-dimensional �2D� oscillating instability
has not been observed in the 3D simulation because hydro-
thermal waves appeared.

Secondary instability: Hydrothermal waves (HW). The
hydrothermal waves are more difficult to simulate because
they need a full 3D simulation with a fine discretization
along the � direction. The hydrothermal waves appear in the
same way as the bidimensional oscillations and stabilize af-
ter around 200 s of calculation. The same technique is used
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FIG. 10. Growing rate of the bidimensional instability �
I� for
different applied thermal difference �T.

FIG. 11. Isotherms contours on the free surface for �T=5 K
�Ma=81 475� and h=14.9 mm �Bd=27.7� �80 isovalues between 0
and 5 K�.

FIG. 12. Numerical ��T=5 K, Ma=81 475� and experimental
��T=10 K, Ma=162 950� visualization of the stationary ray-type
instability for h=14.9 mm �Bd=27.7�, the hatched zone corre-
sponds to the zone hidden by the inner meniscus in the experimen-
tal visualization.

FIG. 13. Numerical ��T=10 K, Ma=11 744� and experimental
��T=6 K, Ma=7047� visualization of the stationary petal instabil-
ity for h=4 mm �Bd=2�.
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to determine the critical Marangoni number value for which
they appear. The initialization field of the computation is
deduced from a stationary result with the same conditions
which is normally an axisymetric flow.

In the experimental configuration using a 120�r�
�240����15�z� plus 48 990 meshes under the heater, hy-
drothermal waves were found for h=1 mm �Bd=0.127� and
�T=5 K �Ma=367�. Figure 15 shows three-dimensional iso-
surfaces of azimuthal thermal gradient ��T /���. These sur-
face waves look like curved branches formed in a wave
source and disappearing in a wave sink. These waves propa-
gate perpendicularly to the isotherm as in Favre et al. �2�.
Two wave sources and two wave sinks were found. Hydro-
thermal waves obtained for other �T and different height
were always with multiple sources and sinks.

Three simulations in this configuration for �T=3, 5 and
7 K allowed us to estimate the growth rate of this 3D hydro-
thermal wave as a function of �T. The critical temperature
difference for wave apparition is �Tc=3.8 K �Ma=279�.
From the diagram of stability of Favre et al. �2� for a liquid
height equal to 1 mm, the hydrothermal waves appear at the
critical difference of temperature of 3 K �Ma=220� in agree-

ment with the simulations. Note that Shi and Imaishi �27�
found a similar critical threshold for the apparition of hydro-
thermal waves �Tc=5.9 K for a configuration with Pr=6.7,
h=1 mm, R1=20 mm, R2=40 mm with an adiabatic bottom
and where the fluid is heated by the outer wall and cooled by
the inner wall.

The spatiotemporal experimental and numerical diagrams
of these hydrothermal waves are shown in Fig. 16. The nu-
merical diagram was built with the fluctuating temperature
T�, defined by Eq. �2�, and computed on a circle at r
=20 mm on the free surface. The experimental diagram ex-
hibits one wave source and one wave sink whereas the nu-
merical diagram shows two sources and two sinks for the
hydrothermal waves. The hydrothermal waves are a 3D ex-
tension of the corotating rolls as an azimuthally thermal
“strength” where the �T increases.

Simulations of a higher layer of fluid corresponding to the
experimental setup �h=2 mm� do not give proper results. In
fact, the initial stationary computation does not give axisy-
metric results. Therefore the study of appearance of HWs
were impossible. We found that this problem does not occur
when the fluid is not cooled by the lower wall; in this con-
figuration the radial extension of the instability is higher.

The main difference between simulation and experiment
is the adiabatic free surface �Bi=0� which may change the
number of branches but not the temperature threshold for the
apparition of the waves.

FIG. 14. Stationary corotative roll, experimental �T=3.2 K,
�Ma=761� and h=1.8 mm �Bd=0.41� shadow-graphic and numeri-
cal �T=7 K �Ma=2055� and h=2 mm �Bd=0.5� visualization,
scale between 0 and 100 K m−1.

FIG. 15. Two 3D isosurface of azimuthal thermal gradient
�7 K m−1 in dark gray and −7 K m−1 in light gray� for the case h
=1 mm �Bd=0.127� and �T=3 K �Ma=220�.
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FIG. 16. Spatiotemporal diagrams: �a� experimental for h
=2 mm �Bd=0.51� and an unknown �T, and �b� numerical for h
=1 mm �Bd=0.127� for �T=5 K �Ma=367�.
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IV. CONCLUSION

A fine numerical simulation of thermoconvective insta-
bilities of a fluid with an intermediate Prandtl number re-
quires important resources. The buoyant-thermocapillary in-
stabilities in a cavity filled with a fluid of Prandtl number of
10.3 heated on the surface in the center and cooled at the
bottom and lateral boundary were simulated and compared
with experimental results with success. The two-dimensional
and three-dimensional simulations of the basic flow corre-
spond to the experimental results of Favre �2� and of Castem
2000 simulations �3�. For the small aspect ratio of the cavity,
the analytical solution of Garnier �9� was extended to the
specific case of a cooled lower wall and was verified by the
simulation. The different stationary instabilities observed by
Favre have been studied and successfully simulated. The ray

instability has been described for a high height of fluid. For
an intermediate height of fluid petal instability has been
simulated. We have shown that for small height of fluid the
threshold of two-dimensional corotating instabilities is
greater than that of the three-dimensional hydrothermal
waves. It explains why experimentally no unstationary two-
dimensional instability was reported in this case by Favre
�2�. Like in experimental observations, hydrothermal waves
appear only when the dynamic Bond number is less than 1,
i.e., when thermocapillary effects are predominant. Hydro-
thermal waves were more difficult to simulate, and we had to
change the configuration of the heater to obtain valuable re-
sults. It can be explained by the fact that the inner and outer
meniscus were not simulated. Moreover, the experimental
heating boundary conditions are not strictly an imposed tem-
perature.
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